Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.455
Filtrar
1.
PLoS One ; 19(4): e0300668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578780

RESUMO

Mast cells are effector cells known to contribute to allergic airway disease. When activated, mast cells release a broad spectrum of inflammatory mediators, including the mast cell-specific protease carboxypeptidase A3 (CPA3). The expression of CPA3 in the airway epithelium and lumen of asthma patients has been associated with a Th2-driven airway inflammation. However, the role of CPA3 in asthma is unclear and therefore, the aim of this study was to investigate the impact of CPA3 for the development and severity of allergic airway inflammation using knockout mice with a deletion in the Cpa3 gene. We used the ovalbumin (OVA)- and house-dust mite (HDM) induced murine asthma models, and monitored development of allergic airway inflammation. In the OVA model, mice were sensitized with OVA intraperitoneally at seven time points and challenged intranasally (i.n.) with OVA three times. HDM-treated mice were challenged i.n. twice weekly for three weeks. Both asthma protocols resulted in elevated airway hyperresponsiveness, increased number of eosinophils in bronchoalveolar lavage fluid, increased peribronchial mast cell degranulation, goblet cell hyperplasia, thickening of airway smooth muscle layer, increased expression of IL-33 and increased production of allergen-specific IgE in allergen-exposed mice as compared to mocktreated mice. However, increased number of peribronchial mast cells was only seen in the HDM asthma model. The asthma-like responses in Cpa3-/- mice were similar as in wild type mice, regardless of the asthma protocol used. Our results demonstrated that the absence of a functional Cpa3 gene had no effect on several symptoms of asthma in two different mouse models. This suggest that CPA3 is dispensable for development of allergic airway inflammation in acute models of asthma in mice.


Assuntos
Asma , Mastócitos , Animais , Camundongos , Alérgenos/metabolismo , Líquido da Lavagem Broncoalveolar , Carboxipeptidases/metabolismo , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Pulmão/metabolismo , Mastócitos/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo
2.
Ann Clin Microbiol Antimicrob ; 23(1): 33, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622723

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a major threat to children's health, particularly in respiratory infections. Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-generation sequencing (mNGS) shows promise in directly detecting microorganisms and resistance genes in clinical samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical clinical decision-making. METHODS: We aimed to evaluate the performance of mNGS in predicting AMR for severe pneumonia in pediatric patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. RESULTS: mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%). Compared to culture, mNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics resistance rates among different bacteria. Sensitivity prediction of mNGS for carbapenem resistance was higher than penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%, 75.00%, 75.00%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter baumannii. CONCLUSIONS: mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.


Assuntos
Antibacterianos , Pneumonia , Humanos , Criança , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Farmacorresistência Bacteriana/genética , Sequenciamento de Nucleotídeos em Larga Escala , Carbapenêmicos , Sensibilidade e Especificidade , Líquido da Lavagem Broncoalveolar
3.
Front Cell Infect Microbiol ; 14: 1345706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606292

RESUMO

Background: Investigations assessing the value of metagenomic next-generation sequencing (mNGS) for distinguish Aspergillus infection from colonization are currently insufficient. Methods: The performance of mNGS in distinguishing Aspergillus infection from colonization, along with the differences in patients' characteristics, antibiotic adjustment, and lung microbiota, were analyzed. Results: The abundance of Aspergillus significantly differed between patients with Aspergillus infection (n=36) and colonization (n=32) (P < 0.0001). Receiver operating characteristic (ROC) curve result for bronchoalveolar lavage fluid (BALF) mNGS indicated an area under the curve of 0.894 (95%CI: 0.811-0.976), with an optimal threshold value of 23 for discriminating between Aspergillus infection and colonization. The infection group exhibited a higher proportion of antibiotic adjustments in comparison to the colonization group (50% vs. 12.5%, P = 0.001), with antibiotic escalation being more dominant. Age, length of hospital stay, hemoglobin, cough and chest distress were significantly positively correlated with Aspergillus infection. The abundance of A. fumigatus and Epstein-Barr virus (EBV) significantly increased in the infection group, whereas the colonization group exhibited higher abundance of A. niger. Conclusion: BALF mNGS is a valuable tool for differentiating between colonization and infection of Aspergillus. Variations in patients' age, length of hospital stay, hemoglobin, cough and chest distress are observable between patients with Aspergillus infection and colonization.


Assuntos
Aspergilose , Infecções por Vírus Epstein-Barr , Pneumonia , Humanos , Herpesvirus Humano 4 , Aspergillus/genética , Tosse , Líquido da Lavagem Broncoalveolar , Sequenciamento de Nucleotídeos em Larga Escala , Antibacterianos , Pulmão , Hemoglobinas , Sensibilidade e Especificidade , Estudos Retrospectivos
4.
Front Cell Infect Microbiol ; 14: 1321886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558853

RESUMO

Cryptococcosis is a life-threatening invasive fungal infection with significantly increasing mortality worldwide, which is mainly caused by Cryptococcus neoformans and Cryptococcus gattii. These two species complexes have different epidemiological and clinical characteristics, indicating the importance of accurate differential diagnosis. However, the clinically used culture method and cryptococcal capsular antigen detection couldn't achieve the above goals. Herein, we established a novel duplex flap probe-based isothermal assay to identify the Cryptococcus neoformans and Cryptococcus gattii within 1 hour. This assay combined the highly sensitive nucleic acid isothermal amplification and highly specific fluorescence probe method, which could effectively distinguish the sequence differences of the two species complexes using two different fluorescence flap probes in a single reaction system. This novel method showed excellent detection performance with sensitivity (10 copies/µL each) and specificity (100%) compared to traditional culture and sequencing methods. Furthermore, we applied this method to spiked clinical samples, 30 cerebrospinal fluids and 30 bronchoalveolar lavage fluids, which kept good detection performance. This novel rapid duplex flap probe-based isothermal assay is a promising and robust tool for applications in differential diagnosis of the Cryptococcus neoformans and Cryptococcus gattii in clinical settings, especially when clinical suspicion for cryptococcal disease is high and epidemiological studies.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Cryptococcus neoformans/genética , Cryptococcus gattii/genética , Criptococose/diagnóstico , Criptococose/microbiologia , Antígenos de Fungos , Líquido da Lavagem Broncoalveolar
5.
Physiol Rep ; 12(8): e16008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38631890

RESUMO

We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-ß-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.


Assuntos
Asma , Ozônio , Pneumonia , Animais , Camundongos , Masculino , Ozônio/efeitos adversos , Adiponectina/farmacologia , Pulmão , Pneumonia/induzido quimicamente , Líquido da Lavagem Broncoalveolar , Receptores Acoplados a Proteínas G , Asma/genética , Quimiocinas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia
6.
Front Immunol ; 15: 1354676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638425

RESUMO

Circular RNAs (circRNAs) are a class of transcripts that often are generated by back-splicing that covalently connects the 3'end of the exon to the 5'end. CircRNAs are more resistant to nuclease and more stable than their linear counterparts. One of the well-recognized roles of circRNAs is the miRNA sponging effects that potentially lead to the regulation of downstream proteins. Despite that circRNAs have been reported to be involved in a wide range of human diseases, including cancers, cardiovascular, and neurological diseases, they have not been studied in inflammatory lung responses. Here, we analyzed the circRNA profiles detected in extracellular vesicles (EVs) obtained from the broncho-alveolar lavage fluids (BALF) in response to LPS or acid instillation in mice. Next, we validated two specific circRNAs in the BALF-EVs and BALF cells in response to endotoxin by RT-qPCR, using specific primers targeting the circular form of RNAs rather than the linear host RNAs. The expression of these selected circRNAs in the BALF inflammatory cells, alveolar macrophages (AMs), neutrophils, and lung tissue were analyzed. We further predicted the potential miRNAs that interact with these circRNAs. Our study is the first report to show that circRNAs are detectable in BALF EVs obtained from mice. The EV-cargo circRNAs are significantly altered by the noxious stimuli. The circRNAs identified using microarrays may be validated by RT-qPCR using primers specific to the circular but not the linear form. Future studies to investigate circRNA expression and function including miRNA sponging in lung inflammation potentially uncover novel strategies to develop diagnostic/therapeutic targets.


Assuntos
Infecções Bacterianas , Vesículas Extracelulares , MicroRNAs , Humanos , Animais , Camundongos , RNA Circular/genética , RNA Circular/metabolismo , Líquido da Lavagem Broncoalveolar , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo
7.
Front Cell Infect Microbiol ; 14: 1230650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638824

RESUMO

Objective: To evaluate the diagnostic value of metagenomic sequencing technology based on Illumina and Nanopore sequencing platforms for patients with suspected lower respiratory tract infection whose pathogen could not be identified by conventional microbiological tests. Methods: Patients admitted to the Respiratory and Critical Care Medicine in Shanghai Ruijin Hospital were retrospectively studied from August 2021 to March 2022. Alveolar lavage or sputum was retained in patients with clinically suspected lower respiratory tract infection who were negative in conventional tests. Bronchoalveolar lavage fluid (BALF) samples were obtained using bronchoscopy. Sputum samples were collected, while BALF samples were not available due to bronchoscopy contraindications. Samples collected from enrolled patients were simultaneously sent for metagenomic sequencing on both platforms. Results: Thirty-eight patients with suspected LRTI were enrolled in this study, consisting of 36 parts of alveolar lavage and 2 parts of sputum. According to the infection diagnosis, 31 patients were confirmed to be infected with pathogens, while 7 patients were diagnosed with non-infectious disease. With regard to the diagnosis of infectious diseases, the sensitivity and specificity of Illumina and Nanopore to diagnose infection in patients were 80.6% vs. 93.5% and 42.9 vs. 28.6%, respectively. In patients diagnosed with bacterial, Mycobacterium, and fungal infections, the positive rates of Illumina and Nanopore sequencer were 71.4% vs. 78.6%, 36.4% vs. 90.9%, and 50% vs. 62.5%, respectively. In terms of pathogen diagnosis, the sensitivity and specificity of pathogens detected by Illumina and Nanopore were 55.6% vs. 77.8% and 42.9% vs. 28.6%, respectively. Among the patients treated with antibiotics in the last 2 weeks, 61.1% (11/18) and 77.8% (14/18) cases of pathogens were accurately detected by Illumina and Nanopore, respectively, among which 8 cases were detected jointly. The consistency between Illumina and diagnosis was 63.9% (23/36), while the consistency between Nanopore and diagnosis was 83.3% (30/36). Between Illumina and Nanopore sequencing methods, the consistency ratio was 55% (22/42) based on pathogen diagnosis. Conclusion: Both platforms play a certain value in infection diagnosis and pathogen diagnosis of CMT-negative suspected LRTI patients, providing a theoretical basis for clinical accurate diagnosis and symptomatic treatment. The Nanopore platform demonstrated potential advantages in the identification of Mycobacterium and could further provide another powerful approach for patients with suspected Mycobacterium infection.


Assuntos
Sequenciamento por Nanoporos , Infecções Respiratórias , Humanos , Estudos Retrospectivos , China , Infecções Respiratórias/diagnóstico , Antibacterianos , Líquido da Lavagem Broncoalveolar , Metagenômica , Sequenciamento de Nucleotídeos em Larga Escala , Sensibilidade e Especificidade
8.
PLoS One ; 19(4): e0297181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573986

RESUMO

Equine asthma (EA) is an important cause of wastage in the USA horse industry. Exposure to organic particulates, from stable dust, airborne pollen, and fungal loads, is posited to be the main cause. Dust arising from the earth's crust has been largely ignored as a contributor to EA in the veterinary literature. The objectives of this study were to investigate the occurrence of birefringent particulates in the bronchoalveolar lavage fluid (BALF) of horses with a clinical complaint of EA residing in the arid West of the USA v. the East, in an effort to determine the contribution of geolocation to geogenic dust exposure. We analyzed BALF cytology and historical data sent to our referral clinical laboratory from 148 horses from the West Coast and 233 horses from the East Coast of the USA over a 6-year period, using light microscopy to determine cell proportions and other visible elements as well as a polarizing lens to detect birefringent material. Univariate analysis showed that horses from the West coast were significantly more likely to have birefringent particulates in the BALF than horses from the East coast (40.5% v. 8.6%, p < 0.001); while horses from the East had higher BALF neutrophil proportions. Horses from the West also had lower proportions of neutrophils in the BALF than those from the East (27.1 v. 10.9, p < .001). Using historical and BAL data in a forward stepwise binary logistic regression model with presence of birefringent particulates found within alveolar macrophages as the outcome, geographical location in the West retained significance as a predictor (OR 8.0, CI [4.3-14.8], p< .001). While the birefringent particulates cannot be identified on the basis of polarizing microscopy alone, this study provides evidence that horses from the West are exposed to inorganic particulates that may contribute to signs of equine asthma.


Assuntos
Asma , Doenças dos Cavalos , Pneumopatias , Cavalos , Animais , Lavagem Broncoalveolar , Asma/veterinária , Asma/diagnóstico , Líquido da Lavagem Broncoalveolar , Poeira , Doenças dos Cavalos/diagnóstico
9.
Cell Immunol ; 397-398: 104815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38428350

RESUMO

Severe asthma (SA) affects 2% to 5% of asthmatic children. Atopic dermatitis can affect up to 34% of children with SA (cwSA). Atopic dermatitis and asthma share common genetic and immunological features. However, not all children with SA suffer from AD, and it remains unclear whether the overall immune profiles of these children are similar. In this study, seventeen cwSA (9.8 [7.1-13.2] years; seven with and ten without AD) were enrolled. Bronchoalveolar lavage (BAL) and blood samples were collected from these patients. Seventy-three cytokines/chemokines and distinct immune T cell populations were evaluated in blood and BAL. We found that BAL and blood immune profiles of cwSA with and without AD were globally similar. However, specific differences were observed, namely lower frequency of Tc2, Th17 and IL-17-producing mucosal associated invariant T (MAIT-17) cells and higher CD8/CD4 ratio and IL-22 concentrations in BAL and of CCL19 concentrations in plasma from cwSA with AD. Further, in contrast with cwSA without AD, we found a positive correlation between a set of plasma cytokines and almost all cytokines in BAL in cwSA with AD. In conclusion, this study shows the major immune differences between cwSA with and without AD in BAL and blood suggesting that distinct endotypes may be implicated in the inflammatory responses observed in these pediatric patients.


Assuntos
Asma , Dermatite Atópica , Humanos , Criança , Citocinas , Células Th17 , Líquido da Lavagem Broncoalveolar
10.
Environ Toxicol Pharmacol ; 107: 104413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485102

RESUMO

Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.


Assuntos
Nanotubos de Carbono , Pneumonia , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Reação de Fase Aguda , Líquido da Lavagem Broncoalveolar/química , Pulmão , Pneumonia/induzido quimicamente , Camundongos Endogâmicos C57BL
11.
Exp Lung Res ; 50(1): 53-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509754

RESUMO

OBJECTIVE: The aim of this study is to assess the impact of Liver X receptors (LXRs) on airway inflammation, airway remodeling, and lipid deposition induced by cigarette smoke and lipopolysaccharide (LPS) exposure in the lung. METHODS: Wild mice and LXR-deficient mice were exposed to cigarette smoke and LPS to induce airway inflammation and remodeling. In addition, some wild mice received intraperitoneal treatment with the LXR agonist GW3965 before exposure to cigarette smoke and LPS. Lung tissue and bronchoalveolar lavage fluid were collected to evaluate airway inflammation, airway remodeling and lipid deposition. RESULTS: Exposure to cigarette smoke and LPS resulted in airway inflammation, emphysema and lipid accumulation in wild mice. These mice also exhibited downregulated LXRα and ABCA1 in the lung. Treatment with GW3965 mitigated inflammation, remodeling and lipid deposition, while the deletion of LXRs exacerbated these effects. Furthermore, GW3965 treatment following exposure to cigarette smoke and LPS increased LXRα and ABCA1 expression and attenuated MyD88 expression in wild mice. CONCLUSION: LXRs demonstrate the potential to mitigate cigarette smoke and LPS- induced airway inflammation, emphysema and lipid disposition in mice.


Assuntos
Benzoatos , Benzilaminas , Fumar Cigarros , Enfisema , Enfisema Pulmonar , Animais , Camundongos , Remodelação das Vias Aéreas , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Enfisema/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Receptores X do Fígado/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL
12.
Respir Res ; 25(1): 146, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555460

RESUMO

BACKGROUND: In chronic pulmonary diseases characterized by inflammation and airway obstruction, such as asthma and COPD, there are unmet needs for improved treatment. Quinolines is a group of small heterocyclic compounds that have a broad range of pharmacological properties. Here, we investigated the airway relaxant and anti-inflammatory properties of a novel quinoline (RCD405). METHODS: The airway relaxant effect of RCD405 was examined in isolated airways from humans, dogs, rats and mice. Murine models of ovalbumin (OVA)-induced allergic asthma and LPS-induced airway inflammation were used to study the effects in vivo. RCD405 (10 mg/kg) or, for comparisons in selected studies, budesonide (3 mg/kg), were administered intratracheally 1 h prior to each challenge. Airway responsiveness was determined using methacholine provocation. Immune cell recruitment to bronchi was measured using flow cytometry and histological analyses were applied to investigate cell influx and goblet cell hyperplasia of the airways. Furthermore, production of cytokines and chemokines was measured using a multiplex immunoassay. The expression levels of asthma-related genes in murine lung tissue were determined by PCR. The involvement of NF-κB and metabolic activity was measured in the human monocytic cell line THP-1. RESULTS: RCD405 demonstrated a relaxant effect on carbachol precontracted airways in all four species investigated (potency ranking: human = rat > dog = mouse). The OVA-specific IgE and airway hyperresponsiveness (AHR) were significantly reduced by intratracheal treatment with RCD405, while no significant changes were observed for budesonide. In addition, administration of RCD405 to mice significantly decreased the expression of proinflammatory cytokines and chemokines as well as recruitment of immune cells to the lungs in both OVA- and LPS-induced airway inflammation, with a similar effect as for budesonide (in the OVA-model). However, the effect on gene expression of Il-4, IL-5 and Il-13 was more pronounced for RCD405 as compared to budesonide. Finally, in vitro, RCD405 reduced the LPS-induced NF-κB activation and by itself reduced cellular metabolism. CONCLUSIONS: RCD405 has airway relaxant effects, and it reduces AHR as well as airway inflammation in the models used, suggesting that it could be a clinically relevant compound to treat inflammatory airway diseases. Possible targets of this compound are complexes of mitochondrial oxidative phosphorylation, resulting in decreased metabolic activity of targeted cells as well as through pathways associated to NF-κB. However, further studies are needed to elucidate the mode of action.


Assuntos
Asma , Hiper-Reatividade Brônquica , Quinolinas , Ratos , Camundongos , Humanos , Animais , Cães , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Líquido da Lavagem Broncoalveolar , Asma/metabolismo , Pulmão/metabolismo , Citocinas/metabolismo , Quinolinas/efeitos adversos , Quimiocinas/metabolismo , Anti-Inflamatórios/efeitos adversos , Inflamação/patologia , Budesonida/farmacologia , Ovalbumina/toxicidade , Camundongos Endogâmicos BALB C
13.
J Agric Food Chem ; 72(13): 7033-7042, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507725

RESUMO

Asthma is recognized as a chronic respiratory illness characterized by airway inflammation and airway hyperresponsiveness. Wogonoside, a flavonoid glycoside, is reported to significantly alleviate the inflammation response and oxidative stress. Herein, this study aimed to investigate the therapeutic effect and underlying mechanism of wogonoside on airway inflammation and mucus hypersecretion in a murine asthma model and in human bronchial epithelial cells (16HBE). BALB/c mice were sensitized and challenged with ovalbumin (OVA). Pulmonary function and the number of cells in the bronchoalveolar lavage fluid (BALF) were examined. Pathological changes in lung tissue in each group were evaluated via hematoxylin and eosin and periodic acid-Schiff staining, and changes in levels of cytokines in BALF and of immunoglobulin E in serum were determined via an enzyme-linked immunosorbent assay. The expression of relevant genes in lung tissue was analyzed via real-time PCR. Western blotting and immunofluorescence were employed to detect the expression of relevant proteins in lung tissue and 16HBE cells. Treatment with 10 and 20 mg/kg wogonoside significantly attenuated the OVA-induced increase of inflammatory cell infiltration, mucus secretion, and goblet cell percentage and improved pulmonary function. Wogonoside treatment reduced the level of T-helper 2 cytokines including interleukin (IL)-4, IL-5, and IL-13 in BALF and of IgE in serum and decreased the mRNA levels of cytokines (IL-4, IL-5, IL-6, IL-13, and IL-1ß and tumor necrosis factor-α), chemokines (CCL-2, CCL-11, and CCL-24), and mucoproteins (MUC5AC, MUC5B, and GOB5) in lung tissues. The expression of MUC5AC and the phosphorylation of STAT6 and NF-κB p65 in lung tissues and 16HBE cells were significantly downregulated after wogonoside treatment. Thus, wogonoside treatment may effectively decrease airway inflammation, airway remodeling, and mucus hypersecretion via blocking NF-κB/STAT6 activation.


Assuntos
Asma , Flavanonas , Glucosídeos , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Ovalbumina/efeitos adversos , Ovalbumina/metabolismo , Interleucina-13 , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-5/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/genética , Pulmão/metabolismo , Inflamação/metabolismo , Muco/metabolismo , Citocinas/genética , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
14.
Front Immunol ; 15: 1320077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533493

RESUMO

Background: The family of Suppressor of Cytokine Signaling (SOCS) acts as a controller of the duration and intensity of cytokine function by negatively regulating the JAK-STAT signaling pathway. SOCS' role in inflammatory diseases in animal models is well demonstrated. However, its role in the development of human disease is still under investigation. SOCS3 plays an important role in tumor development where its downregulation has been implicated in the pathogenesis of various solid tumors such as triple-negative breast cancer. Aim: The aim of this work was to study (1) the expression of SOCS3 in smokers' lungs and its relation to the degree of inflammation and (2) SOCS3 regulation by microRNA (miRNA) in alveolar-macrophage (AM)-derived extracellular vesicles (EVs) in bronchoalveolar lavage (BAL). Methods: Group A: 35 smokers' [19 with COPD (SC) and 16 without COPD (S)] and 9 nonsmokers (NS); SOCS3, TNFα in AM, and CD8+ T cells were quantified by immunohistochemistry, in lung tissue. Group B: additional 9 SC, 11 S, and 5 NS; AM-EVs expressing SOCS3 (CD14+SOCS3+) and SOCS3 suppressors miRNA-19a-3p and 221-3p in EVs were quantified by flow cytometry and PCR, in BAL. Results: The percentage of SOCS3+ AM was higher in SC [68 (6.6-99)%] and S [48 (8-100)%] than in NS [9.6 (1.9-61)%; p = 0.002; p = 0.03] and correlated with % of TNFα+AM (r = 0.48; p = 0.0009) and CD8+ T cells (r = 0.44; p = 0.0029). In BAL, the CD14+SOCS3+ EVs/µL were increased in SC [33 (21-74)] compared to S [16 (8-37); p = 0.03] and NS [9 (7-21); p = 0.003]. Conversely, miRNA-19a-3p and miRNA-221-3p expression were increased in S when compared to SC [19 (2-53) vs. 3 (0.6-8); p = 0.03 and 3 (0.005-9.6) vs. 0.2 (0.08-0.7); p = 0.05]. Conclusions: The suppressor function of SOCS3 in COPD seems to be overridden by other factors and does not follow the animal-model paradigm. Expression of SOCS3 in BAL macrophage-derived EVs might be useful to assess the degree of inflammation and possible progression of COPD. Downregulation of SOCS3, by miRNA, in smokers without COPD might contribute to the risk of developing cancer in these patients.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Líquido da Lavagem Broncoalveolar , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Inflamação , Doença Pulmonar Obstrutiva Crônica/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Aging (Albany NY) ; 16(6): 5038-5049, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546350

RESUMO

Asthma is a common chronic inflammatory disease of the airways, which affects millions of people worldwide. Arctiin, a bioactive molecule derived from the traditional Chinese Burdock, has not been previously reported for its effects on asthma in infants. In this study, an asthma model was established in mice by stimulation with ovalbumin (OVA). Bronchoalveolar lavage (BALF) was collected from OVA-challenged mice and the cells were counted. Lung tissue was harvested for hematoxylin-eosin (HE) staining and measurement of Wet/Dry weight ratios. The expressions of proteins were detected using enzyme-linked immunosorbent assay (ELISA) and Western blots. The superoxide dismutase (SOD) activity in lung tissue was measured using a commercial kit. We found that Arctiin had beneficial effects on asthma treatment. Firstly, it attenuated OVA-challenged lung pathological alterations. Secondly, it ameliorated pro-inflammatory response by reducing the number of inflammatory cells and mitigating the imbalance of Th1/Th2 factors in the bronchoalveolar lavage (BALF) of OVA-challenged mice. Importantly, Arctiin ameliorated OVA-induced lung tissue impairment and improved lung function. Additionally, we observed that oxidative stress (OS) in the pulmonary tissue of OVA-challenged mice was ameliorated by Arctiin. Mechanistically, Arctiin prevented OVA-induced activation of p38 and nuclear factor-κB (NF-κB). Based on these findings, we conclude that Arctiin might serve as a promising agent for the treatment of asthma.


Assuntos
Asma , Furanos , Glucosídeos , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Ovalbumina , Líquido da Lavagem Broncoalveolar , Asma/patologia , Pulmão/patologia , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Citocinas/metabolismo
16.
J Clin Microbiol ; 62(4): e0004524, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477535

RESUMO

Pneumocystis jirovecii pneumonia (PJP) is a serious and sometimes fatal infection occurring in immunocompromised individuals. High-risk patients include those with low CD4 counts due to human immunodeficiency virus infection and transplant recipients. The incidence of PJP is increasing, and rapid detection of PJP is needed to effectively target treatment and improve patient outcomes. A common method used is an immunofluorescent assay (IFA), which has limitations, including labor costs, low sensitivity, and requirement for expert interpretation. This study evaluates the performance of the DiaSorin Molecular Pneumocystis jirovecii analyte-specific reagent (ASR) in a laboratory-developed test (LDT) for the direct detection of P. jirovecii DNA without prior nucleic acid extraction. Respiratory samples (n = 135) previously tested by IFA from 111 patients were included. Using a composite standard of in-house IFA and reference lab PJP PCR, the percent positive agreement for the LDT using the DiaSorin ASR was 97.8% (90/92). The negative percent agreement was 97.7% (42/43). The lower limit of detection of the assay was determined to be 1,200 copies/mL in bronchoalveolar lavage fluid. Analytical specificity was assessed using cultures of oropharyngeal flora and common respiratory bacterial and fungal pathogens. No cross-reactivity was observed. Our study suggests that the DiaSorin Pneumocystis ASR accurately detects P. jirovecii DNA and demonstrates improved sensitivity compared to the IFA method. IMPORTANCE: Our study is unique compared to other previously published studies on the DiaSorin analyte-specific reagent (ASR) because we focused on microbiological diagnostic methods commonly used (immunofluorescent assay) as opposed to pathology findings or reference PCR. In addition, in our materials and methods, we describe the protocol for the use of the DiaSorin ASR as a singleplex assay, which will allow other users to evaluate the ASR for clinical use in their lab.


Assuntos
Pneumocystis carinii , Pneumonia por Pneumocystis , Humanos , Pneumocystis carinii/genética , Indicadores e Reagentes , Sensibilidade e Especificidade , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Hospedeiro Imunocomprometido , DNA
17.
BMC Infect Dis ; 24(1): 308, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481149

RESUMO

BACKGROUND: Scedosporium apiospermum (S. apiospermum) belongs to the asexual form of Pseudallescheria boydii and is widely distributed in various environments. S. apiospermum is the most common cause of pulmonary infection; however, invasive diseases are usually limited to patients with immunodeficiency. CASE PRESENTATION: A 54-year-old Chinese non-smoker female patient with normal lung structure and function was diagnosed with pulmonary S. apiospermum infection by metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF). The patient was admitted to the hospital after experiencing intermittent right chest pain for 8 months. Chest computed tomography revealed a thick-walled cavity in the upper lobe of the right lung with mild soft tissue enhancement. S. apiospermum was detected by the mNGS of BALF, and DNA sequencing reads were 426. Following treatment with voriconazole (300 mg q12h d1; 200 mg q12h d2-d20), there was no improvement in chest imaging, and a thoracoscopic right upper lobectomy was performed. Postoperative pathological results observed silver staining and PAS-positive oval spores in the alveolar septum, bronchiolar wall, and alveolar cavity, and fungal infection was considered. The patient's symptoms improved; the patient continued voriconazole for 2 months after surgery. No signs of radiological progression or recurrence were observed at the 10-month postoperative follow-up. CONCLUSION: This case report indicates that S. apiospermum infection can occur in immunocompetent individuals and that the mNGS of BALF can assist in its diagnosis and treatment. Additionally, the combined therapy of antifungal drugs and surgery exhibits a potent effect on the disease.


Assuntos
Pneumonia , Scedosporium , Humanos , Feminino , Pessoa de Meia-Idade , Scedosporium/genética , Voriconazol/uso terapêutico , Líquido da Lavagem Broncoalveolar/microbiologia , Antifúngicos/uso terapêutico , Pulmão/diagnóstico por imagem , Pneumonia/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala
18.
BMC Pulm Med ; 24(1): 128, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481171

RESUMO

BACKGROUND: With the increasing research on extracellular vesicles (EVs), EVs have received widespread attention as biodiagnostic markers and therapeutic agents for a variety of diseases. Stem cell-derived EVs have also been recognized as a new viable therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). To assess their efficacy, we conducted a meta-analysis of existing preclinical experimental animal models of EVs for ALI treatment. METHODS: The database was systematically interrogated for pertinent data encompassing the period from January 2010 to April 2022 concerning interventions involving extracellular vesicles (EVs) in animal models of acute lung injury (ALI). The lung injury score was selected as the primary outcome measure for statistical analysis. Meta-analyses were executed utilizing RevMan 5.3 and State15.1 software tools. RESULTS: The meta-analyses comprised 31 studies, exclusively involving animal models of acute lung injury (ALI), categorized into two cohorts based on the presence or absence of extracellular vesicle (EV) intervention. The statistical outcomes from these two study groups revealed a significant reduction in lung injury scores with the administration of stem and progenitor cell-derived EVs (SMD = -3.63, 95% CI [-4.97, -2.30], P < 0.05). Conversely, non-stem cell-derived EVs were associated with an elevation in lung injury scores (SMD = -4.34, 95% CI [3.04, 5.63], P < 0.05). EVs originating from stem and progenitor cells demonstrated mitigating effects on alveolar neutrophil infiltration, white blood cell counts, total cell counts in bronchoalveolar lavage fluid (BALF), lung wet-to-dry weight ratios (W/D), and total protein in BALF. Furthermore, pro-inflammatory mediators exhibited down-regulation, while anti-inflammatory mediators demonstrated up-regulation. Conversely, non-stem cell-derived EVs exacerbated lung injury. CONCLUSION: In preclinical animal models of acute lung injury (ALI), the administration of extracellular vesicles (EVs) originating from stem and progenitor cells demonstrably enhances pulmonary function. This ameliorative effect is attributed to the mitigation of pulmonary vascular permeability and the modulation of immune homeostasis, collectively impeding the progression of inflammation. In stark contrast, the utilization of EVs derived from non-stem progenitor cells exacerbates the extent of lung injury. These findings substantiate the potential utility of EVs as a novel therapeutic avenue for addressing acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Animais , Humanos , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Pulmão , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças
19.
J Vis Exp ; (205)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497629

RESUMO

The prompt initiation of empirical anti-infective therapy is crucial in patients presenting with unexplained pulmonary infection. Although imaging acquisition is relatively straightforward in clinical practice, its lack of specificity often necessitates additional time-consuming tests such as sputum culture, bronchoalveolar-lavage fluid culture, or genetic sequencing to identify the underlying etiology of the disease accurately. Moreover, the limited efficacy of empirical anti-infective treatment may contribute to antibiotic misuse. Recent advancements in interpreting microbial background on rapid on-site evaluation (ROSE) slides have enabled clinicians to promptly obtain samples through bronchoscopy (e.g., alveolar lavage, mucosal brushing, tissue clamp), facilitating bedside staining and interpretation that provides essential microbial background information. Consequently, this establishes a foundation for developing targeted anti-infection treatment and individualized drug therapy plans. With a better understanding of which pathogens are causing infections in real-time, physicians can avoid unnecessary broad-spectrum antibiotics contributing to antibiotic resistance. Establishing a rapid and standardized M-ROSE workflow within respiratory medicine departments or intensive care units will greatly assist physicians in formulating accurate treatment strategies for patients, which holds significant clinical implications.


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Humanos , Lavagem Broncoalveolar/métodos , Avaliação Rápida no Local , Líquido da Lavagem Broncoalveolar , Doenças Transmissíveis/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
20.
Mycoses ; 67(3): e13715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477367

RESUMO

BACKGROUND: Invasive pulmonary aspergillosis (IPA) is a relatively common infection in patients with acute myeloid leukaemia (AML), and is associated with high mortality rates. Optimising early detection is key to reduce the burden of IPA in this population. In this retrospective cohort study, we evaluated the added value of baseline chest CT before start of classical induction chemotherapy. METHODS: Adult patients receiving first-line intensive chemotherapy for AML were included if a baseline chest CT scan was available (±7 days). Data were collected from the electronic health record. IPA was classified using the EORTC/MSGERC 2020 consensus definitions. RESULTS: Between 2015 and 2019, 99 patients were included. During first-line treatment, 29/99 (30%) patients developed a probable IPA. Baseline chest CT was abnormal in 61/99 (62%) and 14/61 (23%) patients had typical radiological signs for IPA. An abnormal scan showed a trend towards higher risk for IPA (hazard ratio (HR): 2.12; 95% CI 0.95-4.84). Ground glass opacities were a strong predictor for developing IPA (HR 3.35: 95% CI 1.61-7.00). No probable/proven IPA was diagnosed at baseline; however, a bronchoalveolar lavage (BAL) at baseline was only performed in seven patients. Twelve-week mortality was higher in patients with IPA (7/26, 27% vs. 5/59, 8%; p = .024). CONCLUSION: Baseline chest CT scan could be an asset in the early diagnosis of IPA and contribute to risk estimation for IPA. In patients with an abnormal baseline CT, performing a BAL should be considered more frequently, and not only in patients with radiological findings typical for IPA.


Assuntos
Aspergilose , Aspergilose Pulmonar Invasiva , Leucemia Mieloide Aguda , Adulto , Humanos , Estudos Retrospectivos , Estudos de Coortes , Aspergilose Pulmonar Invasiva/diagnóstico , Tomografia Computadorizada por Raios X , Líquido da Lavagem Broncoalveolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...